Additive effects of amines on asymmetric hydrogenation of quinoxalines catalyzed by chiral iridium complexes.
نویسندگان
چکیده
The additive effects of amines were realized in the asymmetric hydrogenation of 2-phenylquinoxaline, and its derivatives, catalyzed by chiral cationic dinuclear triply halide-bridged iridium complexes [{Ir(H)[diphosphine]}(2)(μ-X)(3)]X (diphosphine = (S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP], (S)-5,5'-bis(diphenylphosphino)-4,4'-bi-1,3-benzodioxole [(S)-SEGPHOS], (S)-5,5'-bis(diphenylphosphino)-2,2,2',2'-tetrafluoro-4,4'-bi-1,3-benzodioxole [(S)-DIFLUORPHOS]; X = Cl, Br, I) to produce the corresponding 2-aryl-1,2,3,4-tetrahydroquinoxalines. The additive effects of amines were investigated by solution dynamics studies of iridium complexes in the presence of N-methyl-p-anisidine (MPA), which was determined to be the best amine additive for achievement of a high enantioselectivity of (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline, and by labeling experiments, which revealed a plausible mechanism comprised of two cycles. One catalytic cycle was less active and less enantioselective; it involved the substrate-coordinated mononuclear complex [IrHCl(2)(2-phenylquinoxaline){(S)-BINAP}], which afforded half-reduced product 3-phenyl-1,2-dihydroquinoxaline. A poorly enantioselective disproportionation of this half-reduced product afforded (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline. The other cycle involved a more active hydride-amide catalyst, derived from amine-coordinated mononuclear complex [IrCl(2)H(MPA){(S)-BINAP}], which functioned to reduce 2-phenylquinoxaline to (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline with high enantioselectivity. Based on the proposed mechanism, an Ir(I)-JOSIPHOS (JOSIPHOS = (R)-1-[(S(p))-2-(dicyclohexylphosphino)ferrocenylethyl]diphenylphosphine) catalyst in the presence of amine additive resulted in the highest enantioselectivity for the asymmetric hydrogenation of 2-phenylquinoxaline. Interestingly, the reaction rate and enantioselectivity were gradually increased during the reaction by a positive-feedback effect from the product amines.
منابع مشابه
Asymmetric hydrogenation of isoquinolinium salts catalyzed by chiral iridium complexes: direct synthesis for optically active 1,2,3,4-tetrahydroisoquinolines.
1,2,3,4-Tetrahydroisoquinolines (THIQs), a class of highly important molecular skeletons abundant in natural alkaloids and biologically active compounds, are often used as key intermediates for the synthesis of pharmaceutical drugs and drug candidates. To date, synthetic efforts have focused on introducing chirality at the C1 position with configurational integrity by employing the following sy...
متن کاملChiral phosphoric acid-catalyzed asymmetric transfer hydrogenation of quinolin-3-amines.
A chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of aromatic amines, quinolin-3-amines, was successfully developed with up to 99% ee. To supplement our previous work on the Ir-catalyzed asymmetric hydrogenation of 2-alkyl substituted quinolin-3-amines, a number of 2-aryl substituted substrates were reduced to provide a series of valuable chiral exocyclic amines with high dia...
متن کاملEfficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts.
Highly efficient iridium catalyzed asymmetric transfer hydrogenation of simple ketones with ethanol as a hydrogen donor has been developed. By using chiral spiro iridium catalysts (S)- a series of alkyl aryl ketones were hydrogenated to chiral alcohols with up to 98% ee.
متن کاملIridium catalyzed asymmetric hydrogenation of cyclic imines of benzodiazepinones and benzodiazepines.
Highly enantioselective Ir-catalyzed hydrogenation of seven-membered cyclic imines of benzodiazepinones and benzodiazepines was achieved with up to 96% ee. This method provides a direct access to synthesize a range of chiral cyclic amines existing in numerous important natural products and clinical drugs.
متن کاملAsymmetric hydrogenation of quinolines catalyzed by iridium complexes of BINOL-derived diphosphonites.
A chiral diphosphonite, derived from BINOL and with an achiral diphenyl ether backbone, is an excellent ligand for the Ir-catalyzed asymmetric hydrogenation of quinolines; achiral P-ligands serving as possible additives (ee = 73-96%).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 18 37 شماره
صفحات -
تاریخ انتشار 2012